Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108598, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38155780

RESUMO

Mosquitoes are important vectors for transmission of many viruses of public and veterinary health concern. These viruses most commonly have an RNA genome and infect mosquitoes for life. The principal mosquito antiviral response is the RNAi system which destroys virus RNA. Here, we confirm an earlier study that Aedes aegypti mosquitoes infected with positive-stranded RNA arboviruses can transmit specific immunity to their offspring. We show that this trans-generational immunity requires replication of virus RNA and reverse transcription of vRNA to vDNA in the infected parents and intergenerational transfer of vDNA. This vDNA is both genome-integrated and episomal. The episomal vDNA sequences are flanked by retrotransposon long-terminal repeats, predominantly Copia-like. Integrated vDNA sequences are propagated along several generations but specific immunity is effective only for a few generations and correlates with the presence of vRNA and episomal vDNA. This understanding raises new possibilities for the control of important mosquito-borne virus diseases.

2.
PLoS Pathog ; 19(1): e1011117, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719928

RESUMO

Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae. aegypti from Saudi Arabia for a release program in the hot coastal city of Jeddah. Wolbachia reduced infection and dissemination of dengue virus (DENV2) in Saudi Arabian mosquitoes and showed complete maternal transmission and cytoplasmic incompatibility. Wolbachia reduced egg hatch under a range of environmental conditions, with the Wolbachia strains showing differential thermal stability. Wolbachia effects were similar across mosquito genetic backgrounds but we found evidence of local adaptation, with Saudi Arabian mosquitoes having lower egg viability but higher adult desiccation tolerance than Australian mosquitoes. Genetic background effects will influence Wolbachia invasion dynamics, reinforcing the need to use local genotypes for mosquito release programs, particularly in extreme environments like Jeddah. Our comprehensive characterization of Wolbachia strains provides a foundation for Wolbachia-based disease interventions in harsh climates.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Arábia Saudita , Austrália , Ambientes Extremos
3.
PLoS Pathog ; 18(2): e1010256, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35196357

RESUMO

Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.


Assuntos
Aedes , Arbovírus , Wolbachia , Animais , Austrália , Wolbachia/genética
4.
PLoS Negl Trop Dis ; 14(4): e0008204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243448

RESUMO

Wolbachia are being used to reduce dengue transmission by Aedes aegypti mosquitoes around the world. To date releases have mostly involved Wolbachia strains with limited fitness effects but strains with larger fitness costs could be used to suppress mosquito populations. However, such infections are expected to evolve towards decreased deleterious effects. Here we investigate potential evolutionary changes in the wMelPop infection transferred from Drosophila melanogaster to Aedes aegypti more than ten years (~120 generations) ago. We show that most deleterious effects of this infection have persisted despite strong selection to ameliorate them. The wMelPop-PGYP infection is difficult to maintain in laboratory colonies, likely due to the persistent deleterious effects coupled with occasional maternal transmission leakage. Furthermore, female mosquitoes can be scored incorrectly as infected due to transmission of Wolbachia through mating. Infection loss in colonies was not associated with evolutionary changes in the nuclear background. These findings suggest that Wolbachia transinfections with deleterious effects may have stable phenotypes which could ensure their long-term effectiveness if released in natural populations to reduce population size.


Assuntos
Aedes/microbiologia , Evolução Molecular , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores/métodos , Wolbachia/fisiologia , Animais , Dengue/prevenção & controle , Drosophila melanogaster , Feminino , Interações entre Hospedeiro e Microrganismos , Modelos Lineares , Masculino , Controle de Mosquitos , Dinâmica Populacional , Wolbachia/patogenicidade
5.
PLoS Negl Trop Dis ; 14(1): e0007958, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971938

RESUMO

Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries.


Assuntos
Aedes/microbiologia , Temperatura Alta , Wolbachia/fisiologia , Animais , Austrália , Feminino , Interações Hospedeiro-Patógeno , Wolbachia/classificação
6.
Am J Trop Med Hyg ; 102(1): 223-231, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769394

RESUMO

Host seeking is an essential process in mosquito reproduction. Field releases of modified mosquitoes for population replacement rely on successful host seeking by female mosquitoes, but host-seeking ability is rarely tested in a realistic context. We tested the host-seeking ability of female Aedes aegypti mosquitoes using a semi-field system. Females with different Wolbachia infection types (wMel-, wAlbB-infected, and uninfected) or from different origins (laboratory and field) were released at one end of a semi-field cage and recaptured as they landed on human experimenters 15 m away. Mosquitoes from each population were then identified with molecular tools or through minimal dusting with fluorescent powder. Wolbachia-infected and uninfected populations had similar average durations to landing and overall recapture proportions, as did laboratory and field-sourced Ae. aegypti. These results indicate that the host-seeking ability of mosquitoes is not negatively affected by Wolbachia infection or long-term laboratory maintenance. This method provides an approach to study the host-seeking ability of mosquitoes in a realistic setting, which will be useful when evaluating strains of mosquitoes that are planned for releases into the field to suppress arbovirus transmission.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Comportamento Alimentar/fisiologia , Animais , Feminino , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Wolbachia
7.
PLoS Negl Trop Dis ; 13(4): e0007357, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31002720

RESUMO

Wolbachia bacteria are now being introduced into Aedes aegypti mosquito populations for dengue control. When Wolbachia infections are at a high frequency, they influence the local transmission of dengue by direct virus blocking as well as deleterious effects on vector mosquito populations. However, the effectiveness of this strategy could be influenced by environmental temperatures that decrease Wolbachia density, thereby reducing the ability of Wolbachia to invade and persist in the population and block viruses. We reared wMel-infected Ae. aegypti larvae in the field during the wet season in Cairns, North Queensland. Containers placed in the shade produced mosquitoes with a high Wolbachia density and little impact on cytoplasmic incompatibility. However, in 50% shade where temperatures reached 39°C during the day, wMel-infected males partially lost their ability to induce cytoplasmic incompatibility and females had greatly reduced egg hatch when crossed to infected males. In a second experiment under somewhat hotter conditions (>40°C in 50% shade), field-reared wMel-infected females had their egg hatch reduced to 25% when crossed to field-reared wMel-infected males. Wolbachia density was reduced in 50% shade for both sexes in both experiments, with some mosquitoes cleared of their Wolbachia infections entirely. To investigate the critical temperature range for the loss of Wolbachia infections, we held Ae. aegypti eggs in thermocyclers for one week at a range of cyclical temperatures. Adult wMel density declined when eggs were held at 26-36°C or above with complete loss at 30-40°C, while the density of wAlbB remained high until temperatures were lethal. These findings suggest that high temperature effects on Wolbachia are potentially substantial when breeding containers are exposed to partial sunlight but not shade. Heat stress could reduce the ability of Wolbachia infections to invade mosquito populations in some locations and may compromise the ability of Wolbachia to block virus transmission in the field. Temperature effects may also have an ecological impact on mosquito populations given that a proportion of the population becomes self-incompatible.


Assuntos
Aedes/microbiologia , Temperatura Alta , Controle Biológico de Vetores/métodos , Wolbachia/crescimento & desenvolvimento , Animais , Meio Ambiente , Feminino , Insetos Vetores/microbiologia , Masculino , Queensland
8.
J Med Entomol ; 56(4): 1078-1086, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30889242

RESUMO

Wolbachia-infected Aedes aegypti (L.) mosquitoes for control of dengue transmission are being released experimentally in tropical regions of Australia, south-east Asia, and South America. To become established, the Wolbachia Hertig (Rickettsiales: Rickettsiaceae) strains used must induce expression of cytoplasmic incompatibility (CI) in matings between infected males and uninfected females so that infected females have a reproductive advantage, which will drive the infection through field populations. Wolbachia is a Rickettsia-like alphaproteobacterium which can be affected by tetracycline antibiotics. We investigated whether exposure of Wolbachia-infected mosquitoes to chlortetracycline at environmentally relevant levels during their aquatic development resulted in loss or reduction of infection in three strains, wAlbB, wMel, and wMelPop. Wolbachia density was reduced for all three strains at the tested chlortetracycline concentrations of 5 and 50 µg/liter. Two of the strains, wMel and wMelPop, showed a breakdown in CI. The wAlbB strain maintained CI and may be useful at breeding sites where tetracycline contamination has occurred. This may include drier regions where Ae. aegypti can utilize subterranean water sources and septic tanks as breeding sites.


Assuntos
Aedes/microbiologia , Clortetraciclina/toxicidade , Poluentes Químicos da Água/toxicidade , Wolbachia/efeitos dos fármacos , Aedes/efeitos dos fármacos , Animais , Feminino , Larva/efeitos dos fármacos , Masculino
9.
Insects ; 9(4)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314399

RESUMO

Wolbachia bacteria have been identified as a tool for reducing the transmission of arboviruses transmitted by Aedes aegypti. Research groups around the world are now mass rearing Wolbachia-infected Ae. aegypti for deliberate release. We investigated the fitness impact of a crucial element of mass rearing: the blood meal required by female Ae. aegypti to lay eggs. Although Ae. aegypti almost exclusively feed on human blood, it is often difficult to use human blood in disease-endemic settings. When females were fed on sheep or pig blood rather than human blood, egg hatch rates decreased in all three lines tested (uninfected, or infected by wMel, or wAlbB Wolbachia). This finding was particularly pronounced when fed on sheep blood, although fecundity was not affected. Some of these effects persisted after an additional generation on human blood. Attempts to keep populations on sheep and pig blood sources only partly succeeded, suggesting that strong adaptation is required to develop a stably infected line on an alternative blood source. There was a decrease in Wolbachia density when Ae. aegypti were fed on non-human blood sources. Density increased in lines kept for multiple generations on the alternate sources but was still reduced relative to lines kept on human blood. These findings suggest that sheep and pig blood will entail a cost when used for maintaining Wolbachia-infected Ae. aegypti. These costs should be taken into account when planning mass release programs.

10.
J Vis Exp ; (126)2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28829414

RESUMO

Aedes aegypti mosquitoes experimentally infected with Wolbachia are being utilized in programs to control the spread of arboviruses such as dengue, chikungunya and Zika. Wolbachia-infected mosquitoes can be released into the field to either reduce population sizes through incompatible matings or to transform populations with mosquitoes that are refractory to virus transmission. For these strategies to succeed, the mosquitoes released into the field from the laboratory must be competitive with native mosquitoes. However, maintaining mosquitoes in the laboratory can result in inbreeding, genetic drift and laboratory adaptation which can reduce their fitness in the field and may confound the results of experiments. To test the suitability of different Wolbachia infections for deployment in the field, it is necessary to maintain mosquitoes in a controlled laboratory environment across multiple generations. We describe a simple protocol for maintaining Ae. aegypti mosquitoes in the laboratory, which is suitable for both Wolbachia-infected and wild-type mosquitoes. The methods minimize laboratory adaptation and implement outcrossing to increase the relevance of experiments to field mosquitoes. Additionally, colonies are maintained under optimal conditions to maximize their fitness for open field releases.


Assuntos
Aedes/microbiologia , Wolbachia , Aedes/fisiologia , Animais , Feminino , Larva , Masculino , Oviposição
11.
PLoS Negl Trop Dis ; 11(4): e0005553, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28410412

RESUMO

Addressing the transmission enigma of the neglected disease Buruli ulcer (BU) is a World Health Organization priority. In Australia, we have observed an association between mosquitoes harboring the causative agent, Mycobacterium ulcerans, and BU. Here we tested a contaminated skin model of BU transmission by dipping the tails from healthy mice in cultures of the causative agent, Mycobacterium ulcerans. Tails were exposed to mosquito (Aedes notoscriptus and Aedes aegypti) blood feeding or punctured with sterile needles. Two of 12 of mice with M. ulcerans contaminated tails exposed to feeding A. notoscriptus mosquitoes developed BU. There were no mice exposed to A. aegypti that developed BU. Eighty-eight percent of mice (21/24) subjected to contaminated tail needle puncture developed BU. Mouse tails coated only in bacteria did not develop disease. A median incubation time of 12 weeks, consistent with data from human infections, was noted. We then specifically tested the M. ulcerans infectious dose-50 (ID50) in this contaminated skin surface infection model with needle puncture and observed an ID50 of 2.6 colony-forming units. We have uncovered a biologically plausible mechanical transmission mode of BU via natural or anthropogenic skin punctures.


Assuntos
Úlcera de Buruli/transmissão , Mordeduras e Picadas de Insetos/complicações , Mycobacterium ulcerans/crescimento & desenvolvimento , Ferimentos Penetrantes Produzidos por Agulha/complicações , Aedes , Animais , Austrália , Feminino , Camundongos Endogâmicos BALB C
12.
PLoS Pathog ; 13(1): e1006006, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056065

RESUMO

Aedes aegypti mosquitoes infected with Wolbachia bacteria are currently being released for arbovirus suppression around the world. Their potential to invade populations and persist will depend on interactions with environmental conditions, particularly as larvae are often exposed to fluctuating and extreme temperatures in the field. We reared Ae. aegypti larvae infected with different types of Wolbachia (wMel, wAlbB and wMelPop-CLA) under diurnal cyclical temperatures. Rearing wMel and wMelPop-CLA-infected larvae at 26-37°C reduced the expression of cytoplasmic incompatibility, a reproductive manipulation induced by Wolbachia. We also observed a sharp reduction in the density of Wolbachia in adults. Furthermore, the wMel and wMelPop-CLA infections were not transmitted to the next generation when mosquitoes were exposed to 26-37°C across all life stages. In contrast, the wAlbB infection was maintained at a high density, exhibited complete cytoplasmic incompatibility, and was transmitted from mother to offspring with a high fidelity under this temperature cycle. These findings have implications for the potential success of Wolbachia interventions across different environments and highlight the importance of temperature control in rearing.


Assuntos
Aedes/microbiologia , Controle Biológico de Vetores/métodos , Wolbachia/crescimento & desenvolvimento , Animais , Meio Ambiente , Temperatura Alta , Insetos Vetores/microbiologia
13.
Am J Trop Med Hyg ; 94(3): 507-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26711515

RESUMO

Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread.


Assuntos
Aedes/microbiologia , Aptidão Genética , Wolbachia/fisiologia , Animais , Carga Bacteriana , Sobrevivência Celular , Feminino , Fertilidade , Interações Hospedeiro-Patógeno , Masculino , Óvulo/microbiologia , Óvulo/fisiologia , Wolbachia/classificação , Wolbachia/genética
14.
PLoS Negl Trop Dis ; 8(9): e3115, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25211492

RESUMO

The wMel infection of Drosophila melanogaster was successfully transferred into Aedes aegypti mosquitoes where it has the potential to suppress dengue and other arboviruses. The infection was subsequently spread into two natural populations at Yorkeys Knob and Gordonvale near Cairns, Queensland in 2011. Here we report on the stability of the infection following introduction and we characterize factors influencing the ongoing dynamics of the infection in these two populations. While the Wolbachia infection always remained high and near fixation in both locations, there was a persistent low frequency of uninfected mosquitoes. These uninfected mosquitoes showed weak spatial structure at both release sites although there was some clustering around two areas in Gordonvale. Infected females from both locations showed perfect maternal transmission consistent with patterns previously established pre-release in laboratory tests. After >2 years under field conditions, the infection continued to show complete cytoplasmic incompatibility across multiple gonotrophic cycles but persistent deleterious fitness effects, suggesting that host effects were stable over time. These results point to the stability of Wolbachia infections and their impact on hosts following local invasion, and also highlight the continued persistence of uninfected individuals at a low frequency most likely due to immigration.


Assuntos
Aedes/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Queensland
15.
Parasit Vectors ; 7: 58, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24495395

RESUMO

BACKGROUND: Recent releases have been carried out with Aedes aegypti mosquitoes infected with the wMelPop mosquito cell-line adapted (wMelPop-CLA) strain of Wolbachia. This infection introduced from Drosophila provides strong blockage of dengue and other arboviruses but also has large fitness costs in laboratory tests. The releases were used to evaluate the fitness of released infected mosquitoes, and (following termination of releases) to test for any effects of wMelPop-CLA on wing size and shape when mosquitoes were reared under field conditions. METHODS: We monitored gravid females via double sticky traps to assess the reproductive success of wMelPop-CLA-infected females and also sampled the overall mosquito population post-release using Biogent Sentinel traps. Morphometric analyses were used to evaluate infection effects on wing shape as well as size. RESULTS: Oviposition success as assessed through double sticky traps was unrelated to size of released mosquitoes. However, released mosquitoes with lower wing loading were more successful. Furthermore, wMelPop-CLA-infected mosquitoes had 38.3% of the oviposition success of uninfected mosquitoes based on the predicted infection frequency after release. Environmental conditions affected wing shape and particularly size across time in uninfected mosquitoes, but not in naturally-reared wMelPop-CLA-infected mosquitoes. Although the overall size and shape do not differ between naturally-reared wMelPop-CLA-infected and uninfected mosquitoes, the infected mosquitoes tended to have smaller wings than uninfected mosquitoes during the cooler November in comparison to December. CONCLUSION: These results confirm the lower fitness of wMelPop-CLA infection under field conditions, helping to explain challenges associated with a successful invasion by this strain. In the long run, invasion may depend on releasing strains carrying insecticide resistance or egg desiccation resistance, combined with an active pre-release population suppression program.


Assuntos
Aedes/fisiologia , Dengue/prevenção & controle , Insetos Vetores/fisiologia , Controle de Mosquitos/métodos , Wolbachia/fisiologia , Aedes/anatomia & histologia , Aedes/microbiologia , Animais , Tamanho Corporal , Dengue/virologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/microbiologia , Dinâmica Populacional , Reprodução , Asas de Animais/anatomia & histologia
16.
Mol Biol Evol ; 28(8): 2393-402, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21393605

RESUMO

Latitudinal body size clines in animals conforming to Bergmann's rule occur on many continents but isolating their underlying genetic basis remains a challenge. In Drosophila melanogaster, the gene Dca accounts for approximately 5-10% of the natural wing size variation (McKechnie SW, Blacket MJ, Song SV, Rako L, Carroll X, Johnson TK, Jensen LT, Lee SF, Wee CW, Hoffmann AA. 2010. A clinally varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Mol Ecol. 19:775-784). We present here functional evidence that Dca is a negative regulator of wing size. A significant negative latitudinal cline of Dca gene expression was detected in synchronized third instar larvae. In addition, we clarified the evolutionary history of the three most common Dca promoter alleles (Dca237-1, Dca237-2, and Dca247) and showed that the insertion allele (Dca247), whose frequency increases with latitude, is associated with larger wing centroid size and higher average cell number in male flies. Finally, we showed that the overall linkage disequilibrium (LD) was low in the Dca promoter and that the insertion/deletion polymorphism that defines the Dca alleles was in strong LD with two other upstream sites. Our results provide strong support that Dca is a candidate for climatic adaptation in D. melanogaster.


Assuntos
Adaptação Biológica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insetos/genética , Animais , Animais Geneticamente Modificados , Tamanho Corporal/genética , Drosophila melanogaster/anatomia & histologia , Evolução Molecular , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Desequilíbrio de Ligação/genética , Masculino , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...